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Abstract

Exposure to ultraviolet B (UVB) irradiation results in multitude of cellular responses including
generation of reactive oxygen species and DNA damage and is responsible for non-melanoma
skin cancers (NMSCs). Although genetic mutation is well documented, the epi-mutation, the
alteration in epigenetics, remains elusive. In this study, we utilized CpG Methyl-seq to identify a
genome-wide DNA CpG methylation, to profile the DNA methylation in UVB-irradiated SKH-1
mouse skin epidermis and non-melanoma skin papillomas at various stages. Methyl-seq and
RNA-seq were performed to examine the methylation and corresponding transcriptome
aterations. The methylation profiles in mouse epidermis were altered by UVB-irradiation as
time progresses. Ingenuity Pathways Analysis (IPA) identified many cancer related pathways
including PTEN, p53, Nrf2 and inflammatory signaling in UVB-irradiation induced
carcinogenesis. Additionally, some novel genes involved in skin carcinogenesis that were not
previously reported were differentially methylated, including Enf2, Mgst2, Vegfa, and Cdk4.
Taken together, the current study provides novel profiles and insights of methylation and
transcriptomic changes at different stages of carcinogenesis in UV B-irradiation induced NMSC
and offers potential targets for prevention and treatment of NMSC at different stages of human

skin cancer.
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Abstract

Exposure to ultraviolet B (UVB) irradiation results multitude of cellular responses including
generation of reactive oxygen species and DNA danaagl is responsible for non-melanoma
skin cancers (NMSCs). Although genetic mutatiorwedl documented, the epi-mutation, the
alteration in epigenetics, remains elusive. In #tigly, we utilized CpG Methyl-seq to identify a
genome-wide DNA CpG methylation, to profile the DM#ethylation in UVB-irradiated SKH-1
mouse skin epidermis and non-melanoma skin papétomt various stages. Methyl-seq and
RNA-seq were performed to examine the methylatiomd aorresponding transcriptome
alterations. The methylation profiles in mousedepinis were altered by UVB-irradiation as
time progresses. Ingenuity Pathways Analysis (IR#ntified many cancer related pathways
including PTEN, p53, Nrf2 and inflammatory signglinin UVB-irradiation induced
carcinogenesis. Additionally, some novel genes lirae in skin carcinogenesis that were not
previously reported were differentially methylated¢luding Enf2, Mgst2, Vegfa, and Cdk4.
Taken together, the current study provides noveffilps and insights of methylation and
transcriptomic changes at different stages of nagenesis in UVB-irradiation induced NMSC
and offers potential targets for prevention andttreent of NMSC at different stages of human

skin cancer.
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1 Introduction

Exposure to ultraviolet B (UVB) is one of the magausative factors for non-melanoma skin
cancers (NMSCs). Long-term exposure to UVB radiati@luces inflammation, oxidative stress,
DNA mutation, and damage, which are involved irtiaion, promotion and progression of
NMSCs (1). The early UV-exposure induces inflammat@sponses with the increased blood
flow, vascular permeability, expression of cyclogggases-2 (COX-2), and production of
prostaglandin (PG) metabolites (2). UVB-inducedamfmation is an important event in all three
stages of NMSCs (2), showing the importance of rodiimg the UVB-induced inflammation for
prevention of skin cancers.

For many years cancer research has focused onigettetrations in carcinogenesis, but
during the last decade epigenetic deregulatiorbkas increasingly recognized as a hallmark of
cancer (3-7). Epigenomic alterations, including DM#ethylation, histone modifications and
mMiRNAs, are now well associated with cancer develept and could become useful biomarkers
and novel targets for prevention or treatment. DiNéthylation can be altered by environmental
influences and provides a mechanism to affect tlenptypes in skin aging and carcinogenesis
(8). Currently, there are a few approaches commuoséd with the next-generation sequencing
(NGS) platforms to profile the genome-wide DNA mg#tion. We have previous applied
protein-affinity enrichment of methylated regiomstivo selected representative carcinogenesis
models (9). This method reports the varying enriehtCpG density but would not provide the
base-pair resolution of methylated cytosines (10,Ah unbiased method to detect methylated
CpG sites at base-pair resolution is the whole genbisulfite sequencing. However, only 70% -
80% of the sequenced reads provide useful DNA nfetiby information (12), and a more cost-

effective method is to detect the methylation aebpair resolution without bias of CpG dense



and poor regions for the genome-wide DNA methytatioOur current study describes the
application of Methyl-Seq for the mouse methylomd d reliably detects the DNA methylation
in different stages of skin carcinogenesis. Thislgtwill provide insights in the understanding of
the alterations of the genome-wide DNA methylatisignatures in UVB-induced skin
carcinogenesis mouse model.

In this study, we used UVB-induced skin cancer reaugdels to examine the transcriptomic
and epigenomic changes during different stagekionfcancer from imitation, promotion, to later
progression. The results from the study will cdnite to the development of safe and efficient
biomarkers by natural phytochemicals chemoprevertiympounds to prevent skin cancers and
to identify potential transcriptomic and epigenormiomarkers during skin carcinogenesis to

provide novel therapeutic strategies.

2 Materials and methods

2.1 Chemicals and reagents

Acetone (HPLC grade) and 10% phosphate-bufferetchdn were obtained from Fisher
Scientific (Hampton, NH, USA). UV lamps that emitvB (280 — 320 nm; 75-80% of total
energy) and UVA (320-375 nm; 20-25% of total engr@g described in previous studies (13).
These UV lamps (FS72T12-UVB-HO; National Biologicbrp., Twinsburg, OH, USA) emit
little or no radiation < 280 nm or > 375 nm. Thenfss emit UVB (280-320 nm; 75-80% of total
energy) and UVA (320-375 nm; 20-25% of total engr@s described in our previous studies
(14,15). The dose of UVB was quantified using a U8Bectra 305 dosimeter (Daavlin Co.,
Bryan, OH, USA). The radiation was calibrated vathlL-1700 research radiometer/photometer

from International Light Inc. (Newburyport, MA, USA



2.2 UV-induced skin carcinogenesis model

The UV-induced model was generated as previouscrdeed (16) and the procedure is
presented in Figure 1A. Six weeks old female SKhhitless mice were randomly assigned into
two groups and the tattoo of mouse ID number waseal on the tail of each mouse. Starting at
the age of eight weeks, mice were applied 60 nfldB-irradiation twice per week for 25
weeks. Body weight was measured biweekly. The healhdition was monitored every three
days, especially the skin condition including UMBluced epidermal hyperplasia, and the

actinic keratosis as pre-cancers.

2.3 Animals and sample preparation

Female SKH-1 hairless mice were purchased from|€hdtiver Laboratories (Wilmington,
MA, USA), as described in previous studies (17)céMiwvere housed at the Rutgers Animal
Facility, maintained under 12 hours light and deykles, and providedd libitum access to food
and water. These mice were housed in the animalityafor at least one week before
experiments. All animal procedures were approvedhay Institutional Animal Care and Use
Committee (IACUC; protocol number: PROT09999001a@f)Rutgers University. Mice were
sacrificed followed by immediately extraction ofrslepidermis. For Methyl-Seq experiments, 2
biological replicates of these tissues were usext. dubsequent pyrosequencing sequencing
validation, 2 identical specimens of these tisswese used. DNA extraction was performed
using the DNA extraction kit (QIAGEN Cat. No. 8020ds described in the manufacturer’s

protocol and previously (18).

2.4 Histopathological analysis
The histopathological analysis was performed asrie=] previously (19). Tissue blocks were

serially sectioned (4 pm) and mounted on glasseslidiThe sections were stained with



hematoxylin and eosin and were carefully evaludigda histopathologist. Images of H&E

stained sections were captured at 200x total miagtidn.

2.5 Methyl-Seq library preparation

Methyl-seq library preparation was performed ushgijent SureSelect Methyl-Seq kit (Cat.
No. G9651A) as described in the manufacturer’'s qualt (Methyl-seq protocol, Version X,
August 2017). 31ig of DNA was used in the library preparation. 5%0af adaptor ligated DNA
was used for the hybridization capture and the ttoacentration of indexed library was 8 to 15
nM. The following changes were made to minimizeltes of DNA in the process of enzymatic
reactions. AMPure XP beads (Cat. No. A63880, Beck®@aulter, USA) were incubated with
DNA reaction mix for 10 min at room temperatureoptio pelleting by magnetization. AMPure
XP beads were then washed twice with 80% ethandldaied at 37°C for 5 min. DNA was
dissolved for 10 min at 37°C. AMPure beads weraimetl in the solution for adenylation and
end-repair reaction. An equal volume of bindingfeufvas added to this reaction mix at 1:1
ratio to enable the AMPure XP beads to rebind tcADMcubated at room temperature for 10
min. DNA was further purified as described aboven€entration and size of DNA fragments

were determined by Agilent Bioanalyzer 2100.

2.6 Bisulfite conversion and next-generation sequencing
Bisulfite conversion was performed using EZ DNA Kidation-Gold kit (Zymo Research,
USA) as described in the manufacturer’'s protocefugncing was performed on an Illumina

HiSeq 2000 platform with 75 bp paired-end readdessribed in the manufacturer’s protocol.



2.7 Bioinformatics analyses of SureSelect Methyl-seq

The reads were aligned to thesilico bisulfite-converted mouse genome (mm10) with the
Bismark (version 0.15.0) alignment algorithm (28jter alignment, DMRfinder (version 0.1)
was used to extract methylation counts and cluSG sites into DMRs (21). Each DMR
contains at least three CpG sites. Methylationedgfiices greater than 0.10 and witR galue
smaller than 0.05 were considered significant. @®@ooannotation was performed with

ChliPseeker (version 1.10.3) in R (version 3.4.Q).(2

2.8 Bisulfite Pyrosequencing

The bisulfite-treated DNA was amplified by PCR gsilatinum PCR Taq DNA polymerase
(Invitrogen, Carlsbad, CA, USA) with the forwarddareverse primers listed in Supplementary
Table 1. Specifically, the reverse primers werdibytated at the 5’ end. The PCR product was
separated by agarose gel electrophoresis and waslized by ethidium bromide staining using
a Gel Documentation 2000 system (Bio-Rad, Hercul&s, USA) to ensure purity of the PCR
products. Later, the biotinylated PCR product wastaured using streptavidin-coated beads (GE
Healthcare, Piscataway, NJ, USA). After annealititfp) ¥he sequencing primer at 80°C for 5 min,

the single-stranded PCR product was pyrosequencea ByroMark Q24 advanced instrument

(Qiagen).

2.9 RNA extraction, library preparation, and next-geti®n sequencing

Total RNA was extracted from snap-frozen skin &saad/or tumor samples from the control
and experimental groups using the AllPrep DND/RNAIiNKIt (Qiagen, Valencia, CA, USA).
The quality and quantity of the extracted RNA sasplere determined with an Agilent 2100
Bioanalyzer. The library was constructed using themina TruSeq RNA preparation kit

(lumina, San Diego, CA, USA) according to the mtacturer's manual. Samples were



sequenced on the lllumina NextSeq 500 instrumetit b bp paired-end reads, to a minimum

depth of 25 — 30 million reads per sample.

2.10 Computational analyses of RNA-seq data

The reads were aligned to the mouse genome Qnmith TopHat v2.0.9 (23). Reference
gene annotations from UCSC were supplied to TopHat genes.gtfO; otherwise, default
parameters were used. The Cufflinks v2.2.1 (24)gmom cuffdiff was used to calculate
expression levels, using the UCSC gene annotations default parameters, as previously

described (25).

2.11 Ingenuity pathway analysis (IPA)

Genes that exhibited a log2 fold change gretitan 1 and a false detection rate (FDR)
adjusted p value (g value)less than 0.01 were stdgléo Ingenuity Pathway Analysis (IPA 4.0,
Ingenuity Systems, www.Ingenuity.com). The inpuhe® were mapped to IPA’s knowledge
bases, and the relevant biological functions, nekeyjoand pathways related to the treatment of

UA were identified.

2.12 Statistical analysis

The data are presented as means + SD. Compari§ongltiple groups were analyzed using
one-way analysis of variance (ANOVA) with Tukey’sultiple comparison test, and simple
comparisons between two groups were analyzed uSindent’'s t-test. Tumor incidence was
examined by Fisher’s exact test. Methylation déferes were analyzed by Mann-Whitney U test.
For gPCR and pyrosequencing dataP avalue less than 0.05 was considered statistically

significant unless otherwise indicated.



3 Reaults

3.1 Non-melanoma Skin Carcinogenesis by UVB irradiation

The animal study was carried out according to sehshown in Figure 1A. We initiated
the study with 8-week-old female SKH-1 mice (dedotsweek 0). Body weight, tumor
incidence, tumor multiplicity, and tumor volume weneasured every two weeks. Designated
numbers of mice from both groups were sacrificethege time points: week 2, 15, and 25.
Only epidermis were collected for the first two érpoints while both epidermis and tumor
(UVB group) or whole skin (Control group) were ealted for the last time point. During the
experimental period, we did not observe noticeddady weight loss or sickness in UVB-
irradiated mice (Figure 1B). Starting from week h6ticeable tumors were observed in the
UVB group (Figures 1C-D). For tumors with diametggeeater than 2 mm, we calculated the
volume with equation V = (L*W*W)/2, where V is thamor volume, L is tumor length, and
W is tumor width. The average tumor volume in UVBugp reached 17 mhat week 24
(Figure 1E). H/E stained slides show that UVB iraéidn increased the thickness of
epidermis from two layers of cells to 4~6 layersyrting as early as two weeks after UVB
exposure (Figure 1F, lower panel, left and midafeages). By week 22, UVB exposure
greatly increased tumor incidence attaining almi@%, and with further increased in tumor

multiplicity and tumor volume at weeks 25 (Fig 1¢-E

3.2 DNA methylation changes in UVB-irradiation induceon-melanoma carcinogenesis

To identify DNA methylation changes in UVB-inducedn-melanoma skin carcinogenesis,
we performed single base-pair resolution Methyl-setlh DNA samples from all three time
points. For week-2 and week-15 groups, DNA wasaexéd from epidermis while for week-25

group, both epidermis and whole skin (in Contraug) and tumor (in UVB group) were used



for DNA extraction (Figure S1A). A total of 16 DNgamples (n = 2 per group) were subjected
to Agilent SureSelect Mouse Methyl-seq library @eion then sequenced on lllumina Hiseq
2000 platform. Sequencing reads were aligned sdico C-T converted mouse genome (mmZ10)
and deduplicated. Individual CpG sites were clesteinto DMRs according to the default
settings in the DMRfinder package (21). Specificatlach DMR has at least three CpG sites and
has a maximum length of 500 bp with no more thahd® between any two CpG sites. Average
methylation ratio for each DMR was calculated agragated counts of 5-mC (as C in bisulfite
converted sequencing) divided by the aggregatedtsoof 5-mC and C (as either C or T in
bisulfite converted sequencing) for all CpG dinotiges in that DMR. We then collected DNA
methylation data for all 16 samples with a total28i7,904 DMRs. These DMRs were further
annotated with gene features using ChiPseeker4\2).1As shown in Figure 2A, most of the
DMRs are located in the distal intergenic (> 3 Kistream transcription start site; TSS or
downstream 3’ untranslated region; UTR) regions wedpromoters. All these 16 samples were
clustered by Euclidean distances of the methyldgeals and it shows that DNA methylation of
whole skin versus tumor samples at week-25 arerlglsaparated from the other epidermis
samples (Figure S1B). Principal component anal(B{SA) also shows the same finding for
these samples (Figure 2B). To further identify thethylation changes by UVB irradiation
and/or aging effects, Euclidean distance clustewag performed with epidermis samples. As
shown in Figure 2C, irrespective of UVB irradiatiomeek-2 samples are clustered separately
from week-15 and week-25 samples. When comparihgaahples at week-15 and week-25,
UVB irradiation has a stronger impact on methylatichanges than aging effect (Fig 2C,
dendrogram). These results suggest that both UkABliation and aging effects can alter DNA

methylation profiles of mouse epidermal cells. Végtrcompared the DNA methylation level of



samples from UVB group versus those samples fromtrGogroup. As shown in Figure 2D, no
significant methylation difference was observedrfrthese two groups of samples. However,
CpG methylation in the promoters was much lowentimaother regions for both groups. We
next focused on gene promoters (<3 kb) containiMiRB in comparison of UVB versus Control
for all three time points, using a cutoff for thestimylation ratio difference of greater than or
equal to 0.1 and a P-value of less than or equ@ld®. The comparisons of UVB versus Control
at time points of Week-2 and Week-15 showed thatgst differences with 2703 and 2550
DMRs, whereas only 81 DMRs were observed with tipgent Week-25. The number of
common DMRs between these comparisons are shoven\ienn Diagram (Figure 2E). MA
plots of methylation change in comparison of UVBsus Control for all three time points are
shown in Figure S1C-E. When looking at DMRs fol génomic locations except distal
intergenic regions with a methylation cutoff lew#l0.1 and a P-value of 0.05, the number of
commonly shared DMRs across the three comparisaneedsed from 16 to 974. The
methylation changes of these 974 DMRs for all thtemparisons are shown in a heatmap
(Figure 2F). About half of the DMRs were hypometigh (upper half heatmap, blue) by UVB

irradiation while the other half were hypermethgta{lower half heatmap, red).

3.3 DNA methylation changes during aging and in défdrstages of carcinogenesis

To further dissect the UVB-irradiation induced mga#ion changes at different stages of
non-melanoma skin carcinogenesis, we performecipahcomponent analysis (PCA) on the 12
epidermis samples. As shown in Figure 3A, all sieugs are clustered separately with aging
effects shifting right (blue arrows) and UVB inddcearcinogenesis shifting down (orange
arrows). When clustering the 974 DMRs (identified $ection 3.2 above) with Euclidean

distance, as shown in the dendrogram in FiguresaBjples in the Control groups for all three



time points are clustered together and are sephfiaien samples in the UVB groups for all three
time points. And within these two conditions, Wekkand Week-25 are clustered together and
are separate from Week-2. Using a cutoff of metigmalevel of 0.1 and a P-value of 0.05, we
also compared and contrasted the methylation cisabgiveen timepoints for each condition,
i.e., Control and UVB. As shown in Figure 3C, salbsal number of DMRs are hyper- (blue) or
hypo- (yellow) when comparing late stages (Weekahl Week-25) versus the early stage
(Week-2), while only a few DMRs are changed whempgaring Week-15 with Week-25.
Similar trends are also observed for both the @bréind the UVB conditions, which is

consistent with the findings in Figure 3B (Dendiayg).

3.4 Gene expression changes in UVB-irradiation indugaatmelanoma carcinogenesis
Matching RNA-seq for the samples mentioned abovMlathyl-seq was performed (Figure
S2A). Principal component analysis (PCA) reveadd,thimilar to the methyl-seq analysis above,
tumor and whole skin samples from week-25 UVB gra@up clustered separately from the
epidermis samples from all time points (Figure SZB)ndrogram and heatmap for the top 1,000
most regulated genes across all 16 samples shawithiar trends of results as shown in PCA
plot (Figure S2C). Additionally, the dendrogram wsisathat the epidermis samples are separated
by UVB-exposed condition rather than aging timenpoiThese findings suggest that UVB
irradiation dominates over aging effects in theutaion of RNA expression in mouse epidermal
cells. Due to the large differences between epidgesamples and tumor or whole skin samples,
we next focused on comparing the RNA expressionvémt UVB and Control groups in
epidermis samples only. Principal component analyBICA) of these 12 samples shows that
samples in UVB groups are clustered separately tr@rsamples in the Control groups and the

difference between time points in UVB appears tonb@mal (Figure 4A). When comparing the



RNA expression of UVB groups to Control groupsisadf 2,301 genes was obtained with false
discovery rate (FDR) adjusted p value (g valudess$ than 0.01, among which 569 genes had at
least two-fold change in RNA expression. The reafRNA expression of these genes is shown
in a heatmap (Figure 4B). Of these 569 genes, 32 wpregulated and 246 were down-
regulated in UVB groups when compared to Controugs. Ingenuity Pathway Analysis (IPA)
on these 569 genes identified a list of 56 sigaifity regulated signaling pathways ( p < 0.01,
Table S2). The top 15 significant pathways are show Figure 4C. These pathways are
primarily clustered in three categories: Cancerl] ©gle regulation, and cell growth. When
comparing the RNA expression of week-25 tumor sasgUVB group) with that of week-25
whole skin samples, we obtained a list of 50 sigaiftly (q < 0.01) expressed genes, with 41 of
them had at least two-fold change in RNA expressidrese genes are listed in Table S3. We
also performed IPA analysis with a much looser o< 0.05) on input genes and obtained a

list of 29 significantly regulated pathways (TaBié).

3.5 Correlations between DNA methylation and RNA expi@s in UVB-irradiation induced
non-melanoma skin carcinogenesis

One of the current fundamental biological questiente correlation or lack of correlation
between CpG methylation and RNA expression. PreviDNA methylation analysis and RNA
expression analysis showed that UVB-irradiation Ipadfound effects over aging. We next
combined DNA methylation profiles with RNA expressiprofiles in the comparison of UVB vs
Control and obtained a list of 6,357 DMRs with esponding RNA expression data. A
representative image of the list is shown in Figoe DNA methylation data are shown on the
left columns (in light blue background) that incbuthe DMR positions, gene features, distance

to transcription start site (TSS), absolute metiytaratios, methylation differences between the



Control and UVB groups, and statistics. RNA exp@sslata are shown on the right columns (in
light green background) including log2 fold-chanigetween UVB and Control groups and
statistics. When filtering the list by a cutoff 6f1 for DNA methylation ratio change and a
cutoff of two-fold change for RNA expression chang§82 DMRs with changes in both DNA
methylation and corresponding RNA expression chamgee identified. The DNA methylation
and RNA expression profiles of these 502 DMRs amws in Figure 5B. Each dot represents a
DMR and their corresponding features are indicdigddifferent colors. These DMRs were
separated into two lists with one containing 296 R¥vthat have an inverse relationship between
DNA methylation and RNA expression and the otheg ocontaining 206 DMRs that have no
such inverse correlation (Tables S5 and S6). CfetigMRs, we further focused on the DMRs
and genes that were involved in the previously tified 56 pathways (Table S1) that were
regulated by UVB-irradiation to finally obtain atiof 19 genes. The RNA-seq data and Methyl-
seq data of these genes are shown in Figure 5C.th&k 19 genes, 18 have an inverse
relationship between DNA methylation and RNA expres, which is consistent with the dogma
of suppressive effect of DNA CpG methylation on g@xpression. However, with Encl, both

decreased RNA expression and decreased CpG meathyhatre observed.

3.6 Validation of key genes regulated in UVB-irradiatianduced non-melanoma skin
carcinogenesis
We next performed pyrosequencing and qPCR on BEi#, Mgst2 and Vegfa to validate
the Methyl-seq and RNA-seq results. The oligo pramesed for validation are listed in Table S1.
Each gene has several DMRs and the methylation aa¢i shown in the heatmap in Figure 6A.
The average methylation ratios of all DMRs for egehe are shown in Figure 6B. Methylation

ratios of one DMR in promoter region for each geme shown in Figure 6C. Due to the



limitation that pyrosequencing can only practicaltyer less than 200 bp of DNA, the selected
regions for validation in Figure 6C are not the sams any DMRs in Figure 6A. Methylation
ratio of individual CpG sites for these genes &@ in Figure S3. These results show that data
from pyrosequencing showed similar methylation gesnby UVB irradiation for these four
validated genes, although the trends among the timee points are not exactly the same. RNA-
seq data for these four validated genes are shovenheatmap (figure 6D) and the values are
plotted in Figure 5E, upper half. g°PCR data aresshim Figure 5F. Both RNA-seq data and
gPCR data showed similar expression change by Uv&liation except for the E2f2 gene,
where gPCR data were not in line with RNA-seq dathese results suggest that UVB-
irradiation induced DNA methylation change and RMNXpression change were mostly

accurately measured by NGS approaches.

4 Discussion

Non-melanoma skin cancers, including basal celtinpamas (BCCs) and squamous cell
carcinomas (SCCs), account for approximately 80% 96 of all skin cancers, respectively,
while malignant melanomas account for only 4% dfskin cancers (26). BCCs and SCCs
develop primarily on sun-exposed areas of the ma as the head and neck. The process of
non-melanoma carcinogenesis is generally dividéal tinree stages — initiation, promotion and
progression. The initiation process involves geti@maof reactive oxygen species and UVB-
irradiation induced DNA damage, which can furth@raduce mutations to genome, including
tumor-suppressor genes such as Trp53. Both UVAUME irradiation can impact on mouse
skin models as a complete carcinogen. UVB light besn shown to initiate the benign tumors

called papillomas in mouse-skin studies (27,28).



The present study provides unique new insights thi alterations induced by UVB-
irradiation for both DNA Methylation and gene exggi®n and more specifically, how different
stages of DNA CpG methylation could regulate gerpression. We observed skin tumor
development as early as 16 weeks after the firsedd UVB irradiation, which is consistent
with findings reported by other investigators (29)this study, we got a list of 502 DMRs that
had at least 0.1 (10%) in methylation ratio chaagd 2-fold change in RNA expression after
UVB irradiation. About 60% of these DMRs showed drsive relationship between DNA
methylation and RNA expression, i.e., hypermethytat coupled with suppression of
transcription or hypomethylation coupled with prdmon of transcription, while the other 40%
of these DMRs did not show such relationship. \a&eehidentified 19 genes with altered CpG
methylation in the different stages of UVB-inducgdn carcinogenesis’s progression and 18 of
these showed inverse relationship between DNA ntegibyp and RNA expression (Figure 5C).
For instance, cyclin-dependent kinase 4 (Cdk4)emegnvolved in cell cycle regulation (30),
was up-regulated by UVB irradiation and was als&Qemethylated. Ming et al, reported that
PTEN pathway was involved in the survival of epidal keratinocytes upon UVB irradiation
(31), here we also found that a number of genegearPTEN pathway were regulated by UVB
irradiation and many of them, including Tgfbr2, FAgfBcl2l1, and Pik3cb had inverse DNA
methylation-RNA expression patterns, which wouldab@ew discovery for the first time in an in
vivo skin cancer model. While UVB irradiation couftluce generation of ROS, Nrf2-mediated
oxidative stress response was also activated by tdvBemoval of excessive ROS. Specifically,
Nrf2-mediated anti-oxidative stress genes Gclm, ®IgEgfrl, and Pik3cb were regulated by
UVB irradiation, implicating potential regulationy lDNA methylation in the promoter regions

of these genes. Lahtz et al. reported that UVBdiat#on does not directly induce detectable



changes of DNA methylation in human keratinocyt&®),the discrepancy between their study
and our current study could be due to differenpoeses between animal and cell line models
and/or different coverage of CpG sites in theselistu As the Agilent SureSelect Kit targets
about 3 million CpG sites in the mouse genome aaduly identified about 1% of that CpG
sites/DMRs (2,703 DMRs in Figures 2E versus 237PMRs in Section 3.2) were differently
methylated by UVB irradiation, the microarray systevhich targeted the 3KB promoter region
of 27,728 RefSeq genes, could miss most of the [MP& sites and islands that were regulated
by UVB irradiation in Lahtz’s study.

In general, UVB irradiation can trigger the activat of several pathways/genes including
Tumor Necrosis Factor Receptor (Tnfr), Epidermalbv&h Factor Receptor (EGFR) and
mitogen-activated protein kinases (MAPKSs) as aaasp to UVB-induced ROS and or DNA
damage. Kim et al, reported that matrix metallopirise genes were activated in human
keratinocyte cells (33,34), however, we did notestss such inductions of these genes in our
current in vivo study. The discrepancy could be idugart to different responses between human
and mouse cells and/or difference between thewva and in vitro cell culture model systems.
Chitsazzadeh et al. performed a similar animalystarnd found that matrix metalloproteinase
genes were overexpressed in UV irradiation-inducetaneous squamous cell carcinoma
samples (35). However, the transcriptomic analiystbat study was performed with whole skin
and tumor samples, which are different from (maiefygidermis samples in our study. One of the
advantages in Chitsazzadeh’s study is that mutatieere detected in tumor suppressor genes
such as p53. Similar approaches could be utilinedur future studies on UVB irradiation and

skin cancer.



In summary, we have utilized the latest Methyl-seg RNA-seq approaches to dissect the
epigenomic CpG methylation changes and gene expresBanges in different stages of UVB-
induced non-melanoma skin carcinogenesis. DNA nhatiop was altered by both UVB
irradiation and aging, while RNA expression wasmhaaffected by UVB irradiation. RNA-seq
data revealed a list of regulated pathways by U¥RBdiation and the top regulated pathways
were cancer, cell cycle regulation and cell growthist of key genes involved in cancer and cell
cycle regulations were also identified with the cmmitant epigenetic CpG modifications of
these genes’ promoters and or gene body by UVRliat@n. Taken together, our current
findings could benefit future studies in targetthgse genes for prevention and treatment of skin

cancers, focusing on the epigenetically regulatsteg and pathways.
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Legends

Figure 1. UVB-irradiation induces non-melanoma skin car cinogenesis. (A) Experimental
design of the animal study. Mice were 8 weeks oltenv study began (week 0). (B) The
biweekly recording of body weight during the expent. (C-E) Measurements of tumor
incidence, tumor multiplicity and tumor volume cwgithe animal study. Note that tumor
volume was calculated with formula V = (L*W*W)/2 nfor tumors that had diameter greater
than 2 mm. (F) Histopathological examination ofdegpmal tissues at x200 magnification.
Arrows indicate epidermis and tumor for early (2 ab weeks) and late (25 weeks) stages,
respectively.
Figure 2. DNA methylation alteration by aging and UVB-irradiation in mouse epidermal
cells. (A) Distribution of annotated differentially matlated regions (DMRs) by gene feature.
Each DMR has at least three CpG sites. (B) Prihcipaponent analysis (PCA) on methylation
profiles of the 16 samples. (C) Dendrogram clustety Euclidean distance on methylation
profiles of 12 epidermis samples. It shows thatsteples are first clustered by time point and
within each time point, samples are separated Iogiton. (D) Average methylation levels of
DMRs based on gene regions for samples in Contndl @VB groups. (E) Venn Diagram
showing number of significantly changed DMRs in muoter region in comparison of UVB
versus Control for all three time points. The cliteés 0.1 for methylation ratios and 0.05 for g
value. (F) Heatmap showing DMRs in promoter regaond gene body with significant changes
between UVB and Control groups for all three tinoéngs. A total of 974 DMRs were identified
with cutoff of methylation ratios at 0.1 and P \akt 0.05.
Figure 3. DNA methylation changes at different stages of carcinogenesis. (A) Principal

component analysis (PCA) on the same 12 samples.blwe arrows showing the shifting trends



of age and orange arrows showing the shifting seofdUVB irradiation. Note the two blue
arrows approach each other as age progresses.e@jnidp showing average methylation ratio
of 974 DMRs from Control and UVB conditions for #tiree time points. These 974 DMRs are
the same as identified in Figure 2F. All six growpe from epidermis samples. (C) MA plots
showing methylation changes between timepointCiantrol condition (upper three plots) and
UVB condition (lower three plots).

Figure 4. Gene expression change by UVB-irradiation induced non-melanoma skin
carcinogenesis. (A) Principal component analysis (PCA) on RNA egwion of the same 12
samples as mentioned in Figure 2. RNA expressiofilgs of samples in the Control groups for
all time points are discrete (blue oval), wherethsamples in the UVB groups are clustered
together (orange oval), suggesting UVB-irradiatlmas prevailing effects over aging on gene
expression in mouse epidermal cells. (B) Dendrogcumstering by Euclidean distance and
heatmap showing top 569 regulated genes by UVBlateon with cutoff g < 0.01 and
log2(Fold Change) > 1 or < -1. The dendrogram shtlves samples are first clustered by
treatment condition then by time point, which issistent with the PCA in Figure A. (C) Top 15
regulated pathways that were regulated by UVB-iataah. Pathways were identified by
Ingenuity Pathway Analysis (IPA) with the list o6% regulated genes in Figure B. These
pathways have P values smaller than 0.0001 (shewsl@g (P values) on x-axis).

Figure 5. Correlations between DNA methylation and RNA expression. (A) A representative
image of the 6357 DMRs that have corresponding RIX¥pression data in comparison of UVB
vs Control. Gene names are shown in the first colugach gene has several coupling DMRs as
shown in the second column. DMR information inchgliocation, number of CpG sites and

methylation ratios in Control and UVB groups areowh in blue background and RNA



expression data including log2(Fold Change) antissitss are shown in green background. (B)
Scatter plot showing 502 DMRs with cutoff 0.1 foNB methylation and 2-fold change for
RNA expression. DMR locations (gene features) adécated by colors. (C) A list of genes that
were involved in the pathway regulations and time@thylation and expression profiles. Time
points are shown on x-axis. Control and UVB cowdisi are shown with blue and orange lines,
respectively.

Figure 6. Validation of 4 genes by pyrosequencing and qPCR. (A) Heatmap showing
methylation ratio of the DMRs for these 4 genesnfrblethyl-seq data. Note each gene has
several coupling DMRs, which are shown to the righthe heatmap. (B) Average methylation
levels of DMRs for each gene. (C) The met+hylatiatio of one DMR in promoter region for
each gene was determined by pyrosequencing. (Djntégashowing gene expression from
RNA-seq (log2FPKM) of these for genes. These vahresplotted in Figure E. Values from

gPCR are plotted in Figure F.
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Highlights

DNA methylation was altered by both UVB irradiation and aging, while RNA expression
was mainly affected by UVB irradiation.

A list of key genes involved in UVB irradiation induced carcinogenesis were identified
with concomitant DNA CpG methylations.

This study provides novel profiles of CpG methylation and transcriptomic changes at
different stages of UVB irradiation induced skin cancer and offers potential targets for

prevention/treatment of human skin cancer.



